Electrical

Alexandra Foley | August 11, 2014

Interested in using COMSOL Multiphysics to simulate electrical applications? The new Electrical showcase is a resource for those of you who want to learn about the COMSOL software’s capabilities for modeling a variety of electrical systems, components, and devices. The showcase provides you with valuable content such as how-to videos, user case studies, white papers, and example models specific to your area of expertise.

Read more ⇢

Article Categories

Mark Fowler | August 6, 2014

Last month, my colleague Alexandra Foley introduced an RF modeling example that uses periodic boundary conditions. Another RF model that can be created with ease by taking advantage of periodic boundary conditions is the Frequency Selective Surface, Periodic Complementary Split Ring Resonator model.

Read more ⇢

Article Categories

Annette Meiners | August 4, 2014

The electron energy distribution function (EEDF) plays an important role in plasma modeling. Various approaches can be used to describe the EEDF, such as Maxwellian, Druyvesteyn, or using a solution of the Boltzmann equation. Today, we will demonstrate the influence the EEDF has on a plasma model’s results. Additionally, we present a way to compute the EEDF with the Boltzmann Equation, Two-Term Approximation interface.

Read more ⇢

Article Categories

Alexandra Foley | July 25, 2014

In the 2012 edition of Multiphysics Simulation, we featured an article about modeling spinal cord stimulation to determine the effect that scar tissue can have on electrical current distribution during the treatment of chronic pain. Recently, the full-length paper by Beth Israel Deaconess researchers Jeffrey Arle, Kris Carlson, Longzhi Mei, and Jay Shils was published in the journal Neuromodulation.

Read more ⇢

Article Categories

Walter Frei | July 14, 2014

Whenever modeling magnetic fields in steady-state, transient, or frequency domain with the AC/DC Module, we want to reduce the size of the model as much as possible to minimize the computational resources and time needed to solve the model. Today, we will introduce the three types of symmetry boundary conditions that you can exploit in your modeling and show how to use them.

Read more ⇢

Article Categories

Alexandra Foley | July 9, 2014

There are two types of anechoic chambers — acoustic and radio frequency (RF). Here, we explore how periodic structures can be used to help quickly model an RF anechoic chamber by reducing the complexity and computation time of the model.

Read more ⇢

Article Categories

Fanny Littmarck | July 7, 2014

There’s a new book out there for those of you who work with or research electromechanical system design. It’s titled Multiphysics Simulation: Electromechanical System Applications and Optimization and is more than your average textbook. This is a reference guide on simulation and topology optimization written with both students and industry engineers in mind.

Read more ⇢
Fabian Scheuren | June 23, 2014

One of the main issues with high-power electrical devices is thermal management. Together with BLOCK Transformatoren, we created a model using COMSOL Multiphysics simulation software that encompasses all of the important details when modeling heating of high-power electrical devices. To do so, we had to utilize high performance computing (HPC) with hybrid modeling. Here, we will discuss how to approach this real-life task with the COMSOL software.

Read more ⇢
Jennifer Segui | June 19, 2014

It’s likely that you’ve heard or read about many of the exciting discoveries in particle physics research at Fermilab. Powerful particle accelerators, including the Booster synchrotron with its unique ferrite-tuned RF cavities, consistently bring the lab to the forefront of discovery. Upgrading the 40-year-old Booster RF cavities will enable them to produce and sustain particle beams at even higher intensities… but will they overheat? Learn how the engineers at Fermilab address this important design challenge.

Read more ⇢

Article Categories

Mark Fowler | June 17, 2014

When you lose power at home, you may use a shaker flashlight to navigate about your house. This type of flashlight relies on voltage produced by electromagnetic induction in order to be powered. How much voltage can one of these flashlights produce, do you think? Here, we find out through computation, using the AC/DC Module.

Read more ⇢

Article Categories

Amelia Halliday | June 16, 2014

If you are searching for a tutorial on how to model a miniaturized 3D electromechanics problem, then look no further. We have just published an updated version of our video tutorial on how to simulate a capacitive pressure sensor. COMSOL Multiphysics version 4.4 and the MEMS Module are used to simulate the electrostatic, structural, and thermal physics that occur.

Read more ⇢

Article Categories

1 2 3 11